Abstract

The Humber Estuary, UK, divides into the Ouse and Trent estuaries at the so-called Apex within its upper reaches. Remotely sensed Compact Airborne Spectrographic Imager (CASI) images and boat measurements were used to observe a strong turbidity maximum in the upper Humber and Ouse during a spring tide in November 1995. Surface suspended particulate matter (SPM) concentrations during the late ebb, as estimated from the CASI data, increased from approximately 6 to 13 g I−1 moving up-estuary into the Ouse. Greater SPM concentrations (∼10 g I−1) were evident in the deeper channels of the Ouse, compared with shallower areas, possibly due to faster ebb currents there and differential down-estuary advection of the turbidity maximum. Ribbons, or streaks, of lower SPM and slightly cooler waters were observed. It appears that slightly cooler and lower turbidity waters from the confluent Trent estuary remained fairly distinct for distances of approximately 2 km down-stream of its confluence with the upper Humber and Ouse. These waters eventually broke into ribbon-like or streak-like structures within the higher SPM-laden and slightly warmer waters of the Humber. They were discernible for more than 5 km down-estuary of the confluence of the Humber, Ouse, and Trent. Boat measurements showed that the turbidity maximum occurred over a fairly restricted region of the upper Humber, between about 20 to 50 km from the tidal limit at high water. The turbidity maximum’s sediment load was largely suspended in the water column during stronger currents. SPM rapidly settled close to the bed during high water and low water slack periods. At these times, SPM concentrations in a thin, near-bed layer were >60 g I−1 in the turbidity maximum region of the Ouse and >30 g 1−1 in the upper Humber (where channel volumes were much greater). SPM within the turbidity maximum comprised very fine-grained material and its low organic content demonstrated that the SPM was essentially mineral, clastic sediment derived originally from erosion and decay of crustal rocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call