Abstract
Remotely operated vehicles (ROVs) typically use traditional optical imaging systems, such as cameras, for high resolution imaging. Cameras are effective in clear water, but have extremely poor performance in degraded visual environments (DVEs) such as turbid coastal waters and harbors. This is due to the multiple scattering of the light from the particulates and organic matter in the water. Laser-based sensors have been developed to enhance optical imaging in DVEs 1,3,4,5,6 . However, since conventional approaches require that the illuminator and receiver be located on the same platform, the size, weight, and power (SWaP) requirements are incompatible with small ROVs. Researchers at NAVAIR have developed a low cost optical imager utilizing a bistatic geometry where the illuminator and receiver are mounted on separate, smaller platforms. The illuminator steers a modulated laser beam with a microelectromechanical system (MEMS) scanner to sequentially illuminate an underwater object. A distant receiver collects the object reflected laser light and reconstructs the imagery. Communications information, including a synchronization sequence, is encoded onto the modulation which is used by the receiver to build the image. The SWaP of the illuminator’s components have been optimized and integrated into a modified version of the OpenROV, a miniature, commercial off-the-shelf ROV. This paper reports on the efforts to reduce the SWaP of the modulated illuminator and the results of testing this system in a laboratory water tank environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.