Abstract

Gas–liquid mass transfer from oxygen Taylor bubbles to liquid in tube was studied using dilute colloidal suspensions of magnetic nanoparticles (MNPs) as the liquid phase. The tube was hosted inside the bore of a tubular two-pole three-phase magnet and the MNPs were remotely excited by subjecting them to different types of magnetic fields. The influence of magnetic field on the liquid side volumetric mass transfer coefficient (kLa) was cast as an enhancement factor with respect to the magnetic field free base case. The repercussions of magnetic field frequency, MNP concentration, tube alignment and gas velocity on this enhancement factor were measured experimentally. Experimental results suggested that spinning nanoparticles under transverse rotating magnetic fields (TRMF) improved mixing in the lubricating film that surrounds Taylor bubbles which reflected in a measurable enhancement of kLa. On the contrary, axial stationary magnetic fields (ASMF) pinned MNPs translating in systematically degraded gas–liquid mass transfer rates whereas axial oscillating magnetic field had no detectable effects on the mass transfer coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.