Abstract

Remote detection of NMR is a novel technique in which an NMR-active sensor surveys an environment of interest and retains memory of that environment to be recovered at a later time in a different location. The NMR or MRI information about the sensor nucleus is encoded and stored as spin polarization at the first location and subsequently moved to a different physical location for optimized detection. A dedicated probe incorporating two separate radio frequency (RF)—circuits was built for this purpose. The encoding solenoid coil was large enough to fit around the bulky sample matrix, while the smaller detection solenoid coil had not only a higher quality factor, but also an enhanced filling factor since the coil volume comprised purely the sensor nuclei. We obtained two-dimensional (2D) void space images of two model porous samples with resolution less than 1.4 mm 2. The remotely reconstructed images demonstrate the ability to determine fine structure with image quality superior to their directly detected counterparts and show the great potential of NMR remote detection for imaging applications that suffer from low sensitivity due to low concentrations and filling factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.