Abstract

The efficient transport and engineering of photonic orbital angular momentum (OAM) lie at the heart of various related classical and quantum applications. Here, by leveraging the spatial-mode-engineered frequency conversion, we realize the remote transport of high-dimensional orbital angular momentum (OAM) states between two distant parties without direct transmission of information carriers. We exploit perfect vortices for preparing high-dimensional yet maximal O AM entanglement. Based on nonlinear sum-frequency generation working with a strong coherent wave packet and a single photon, we conduct the Bell-like state measurements for high-dimensional perfect vortices. We experimentally achieve an average transport fidelity 0.879 ± 0.048 and 0.796 ± 0.066 for a complete set of 3-dimensional and 5-dimensional OAM mutually unbiased bases, respectively. Furthermore, by exploring the full transverse entanglement, we construct another strategy of quantum imaging with interaction-free light. It is expected that, with the future advances in nonlinear frequency conversion, our scheme will pave the way for realizing truly secure high-dimensional quantum teleportation in the upcoming quantum network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call