Abstract

We have developed a new control method for the QuasiZenith Satellite (QZS) remote synchronization system for an onboard crystal oscillator (RESSOX). The new method utilizes both L1 and L2 positioning signals of the QZS. We also found that precise orbit information and the estimation of delays, such as those caused by the ionosphere and troposphere, are not necessary to realize the RESSOX technology. The estimation of the delays of the L1-, L2- and Ku-band signals caused by the ionosphere and other sources can be calculated separately during feedback control, and the results of Ku-band delay are used to generate the RESSOX control signal. The simulation results showed that synchronization of within 3 ns between the ground site clock and the QZS site clock is achievable. Experimental results on the ground also confirmed that synchronization within 3 ns is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.