Abstract

New antioxidants are commonly evaluated via two main approaches, i.e., the ability to donate an electron and the ability to intercept free radicals. We compared these approaches by evaluating the properties of 11 compounds containing both antioxidant moieties (mono- and polyphenols) and auxiliary pharmacophores (pyrrolidone and caprolactam). Several common antioxidants, such as butylated hydroxytoluene (BHT), 2,3,5-trimethylphenol (TMP), quercetin, and dihydroquercetin, were added for comparison. The antioxidant properties of these compounds were determined by their rates of reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and their oxidation potentials from cyclic voltammetry. Although these methods test different chemical properties, their results correlate reasonably well. However, several exceptions exist where the two methods give opposite predictions! One of them is the different behavior of mono- and polyphenols: polyphenols can react with DPPH more than an order of magnitude faster than monophenols of a similar oxidation potential. The second exception stems from the size of a "bystander" lactam ring at the benzylic position. Although the phenols with a seven-membered lactam ring are harder to oxidize, the sterically nonhindered compounds react with DPPH about 2× faster than the analogous five-membered lactams. The limitations of computational methods, especially those based on a single parameter, are also evaluated and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.