Abstract

We present a scheme for remote preparing a general two-particle state by two entangled states serving as the quantum communication channel. In this scheme, it is possible for the receiver to perfectly reconstruct the initial state that the sender hopes to prepare with the method of introducing an auxiliary qubit and postselection measurements in the situation of non-maximal entangled quantum channel. Furthermore, we investigate the influence of the dissipation factors on the processing of the remote state preparation when the entangled resources are in the Markovian and non-Markovian noisy environments. It is shown that the fidelity of remote state preparation is decreasing exponentially over time in Markovian environments and attenuating oscillatorily in non-Markovian. However, when the non-Markovian and the detuning conditions are satisfied simultaneously, the fidelity can be preserved at comparative high levels, effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.