Abstract

Orbital angular momentum (OAM) is a potential tool for remote sensing applications since amplitude/phase distributions can be decomposed into an OAM basis for analysis. We demonstrate the generation of a spatially asymmetric perfect vortex (APV) basis based on a pulsed 2D HOBBIT (Higher Order Bessel Beams Integrated in Time) system using two acousto-optic deflectors and optical coordinate transformation optics. Results are demonstrated for numerous radii and OAM charges as high as 20, with switching speeds greater than 400 kHz. The spatial APV basis is used to design different types of pulse trains for amplitude object pattern recognition and phase object wavefront sensing. Experimental results of sensing are provided for an amplitude object and a phase object to demonstrate the feasibility of the spatial APV on remote sensing tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.