Abstract

Snow avalanches, one of the most severe natural hazards in mountainous regions, pose significant risks to human lives, infrastructure, and ecosystems. As climate change accelerates shifts in snowfall and temperature patterns, it is increasingly important to improve our ability to monitor and predict avalanches. This review explores the use of remote sensing technologies in understanding key geomorphological, geobotanical, and meteorological factors that contribute to avalanche formation. The primary objective is to assess how remote sensing can enhance avalanche risk assessment and monitoring systems. A systematic literature review was conducted, focusing on studies published between 2010 and 2025. The analysis involved screening relevant studies on remote sensing, avalanche dynamics, and data processing techniques. Key data sources included satellite platforms such as Sentinel-1, Sentinel-2, TerraSAR-X, and Landsat-8, combined with machine learning, data fusion, and change detection algorithms to process and interpret the data. The review found that remote sensing significantly improves avalanche monitoring by providing continuous, large-scale coverage of snowpack stability and terrain features. Optical and radar imagery enable the detection of crucial parameters like snow cover, slope, and vegetation that influence avalanche risks. However, challenges such as limitations in spatial and temporal resolution and real-time monitoring were identified. Emerging technologies, including microsatellites and hyperspectral imaging, offer potential solutions to these issues. The practical implications of these findings underscore the importance of integrating remote sensing data with ground-based observations for more robust avalanche forecasting. Enhanced real-time monitoring and data fusion techniques will improve disaster management, allowing for quicker response times and more effective policymaking to mitigate risks in avalanche-prone regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.