Abstract

This letter introduces a novel remote sensing single-image superresolution (SR) architecture based on a deep efficient compendium model. The current deep learning-based SR trend stands for using deeper networks to improve the performance. However, this practice often results in the degradation of visual results. To address this issue, the proposed approach harmonizes several different improvements on the network design to achieve state-of-the-art performance when superresolving remote sensing imagery. On the one hand, the proposal combines residual units and skip connections to extract more informative features on both local and global image areas. On the other hand, it makes use of parallelized $1\times 1$ convolutional filters (network in network) to reconstruct the superresolved result while reducing the information loss through the network. Our experiments, conducted using seven different SR methods over the well-known UC Merced remote sensing data set, and two additional GaoFen-2 test images, show that the proposed model is able to provide competitive advantages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.