Abstract

The Pearl River Delta in South China is subject to severe eutrophication, which is significantly exacerbated by the total nitrogen (TN). Remote sensing technology with large-scale synchronous observations in the Pearl River Delta can effectively monitor organic pollution. Statistical methods based on remote sensing images have been widely used in water quality parameter retrieval for inland rivers, reservoirs, and lakes, but have seldom been applied in the Pearl River Delta. TN is also a non-optically active substance, so it is difficult to retrieve TN through analysis methods. This study retrieves the concentration of total nitrogen (TN) based on Landsat8 images of the Pearl River Delta using a statistical method. The stepwise regression function is built by analyzing the TN concentration and the single-band, two-band, and three-band spectral information groups measured by an ASD FieldSpec3 spectrometer. The retrieval results show that the proposed method performs well with a small mean absolute error (MAE) (0.36 mg/L for TN) and high agreement (R2 = 0.61 for TN) between the in situ data and the retrieval concentration. The results demonstrate that the concentration of TN in the east of the Pearl River Delta was higher than in the west. Dachan Bay and Shenzhen Bay had the highest TN concentrations, which were around 3.02 mg/L and 3.67 mg/L. The 750–850 nm band could be an important reference for further exploring the spectral characteristics and retrieval of TN. The retrieval method in this study is easy to implement and convenient for local TN distribution capture, which can provide a timely reference for daily water quality supervision and management in the Pearl River Delta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.