Abstract

As the amount of data and the complexity of the processing rise, the demand for processing power in remote sensing applications is increasing. The processing speed is a critical aspect to enable a productive interaction between the human operator and the machine in order to achieve ever more complex tasks satisfactorily. Graphic processing units (GPU) are good candidates to speed up some tasks. With the recent developments, programming these devices became very simple. However, one source of complexity is on the frontier of this hardware: how to handle an image that does not have a convenient size as a power of 2, how to handle an image that is too big to fit the GPU memory? This paper presents a framework that has proven to be efficient with standard implementations of image processing algorithms and it is demonstrated that it also enables a rapid development of GPU adaptations. Several cases from the simplest to the more complex are detailed and illustrate speedups of up to 400 times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.