Abstract

Due to the lower canopy height at the maximum crown width at the bottom of young Picea crassifolia trees, they are mixed with undergrowth. This makes it challenging to accurately determine crown size using CHM data or point cloud data. UAV imagery, on the other hand, incorporates rich color information and, after processing, can effectively distinguish between spruce trees and ground vegetation. In this study, the experimental site was an artificial young forest of Picea crassifolia in Shangshan Village, Qinghai Province, China. UAV images were used to obtain normalized saturation data for the sample plots. A marker-controlled watershed segmentation algorithm was employed to extract tree parameters, and the results were compared with those obtained via point cloud clustering segmentation and the marker-controlled watershed segmentation algorithm based on Canopy Height Model (CHM) images. The research results showed that the single tree recognition capabilities of the three types of data were similar, with F-measures of 0.96, 0.95, and 0.987 for the CHM image, UAV imagery, and point cloud data, respectively. The mean square errors of crown width information extracted from the UAV imagery using the marker-controlled watershed segmentation algorithm were 0.043, 0.125, and 0.046 for the three sample plots, which were better than the values of 0.103, 0.182, and 0.074 obtained from CHM data, as well as the values of 0.36, 0.461, and 0.4 obtained from the point cloud data. The point cloud data exhibited better fitting results for tree height extraction compared to the CHM images. This result indicates that UAV-acquired optical imagery has applicability in extracting individual tree feature parameters and can compensate for the deficiencies of CHM and point cloud data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call