Abstract

Based on field experiments and analysis, the study examined the spectral characteristic and spatial variability of turbidity in the Pearl River Estuary by using the EO-1 ALI satellite imagery collected on December 18, 2005. A negative regression model (turbidity = −439.52 × R (570) + 22.913, R 2 = 0.9042, n = 11) between the in-situ turbidity and the reflectance at 570 nm (maximum correlation spectral band between 350 and 2500 nm), resulting from increasing of organic matters in suspended solids, was built and applied to ALI band 4 (0.525–0.605 nm). Simple in-water spectral pairs calibration method of bright and dark targets provided the good atmospheric correction of ALI with a root mean square error of 0.00061, and mean absolute percentage error of 2.04%. The study also found the seawater turbidity is a more accurate indicator of Chl_ a concentration ( R 2 = 0.7442) than TSS ( R 2 = 0.7061). Also, there is a large correlation between TSS and the turbidity ( R 2 = 0.86, N = 22) for Modaomen watercourse. The model-deduced turbidity distribution from ALI band 4 exhibited distinctive spatial variability of turbidity in the dry season, accordant with seasonal in-situ investigation. The ALI data provides accurate estimates of the mean water clarity conditions in the PRE ( RMSE = 1.878 and MAPE = 11.7%) and has potential importance for water quality monitoring of optical remote sensing in the similar estuaries and its future operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.