Abstract

It is critical for buried target detection via ripple scattering to know the ripple structure, e.g., the ripple height and spatial wavelength. In the present paper, backscattering data from a 300-kHz system show that ripple wavelength and height can potentially be estimated from backscattering images. Motivated by the backscatter data, we have developed a time-domain numerical model to simulate scattering of high-frequency sound by a ripple field. This model treats small-scale scatterers as Lambertian scatterers distributed randomly on the large-scale ripple field. We have found that this approach characterizes the field data well. Numerical simulations are conducted to investigate the possibility of remotely sensing bottom ripple heights and wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.