Abstract

AbstractThe Senegalese grasshopper, Oedaleus senegalensis (Krauss) (Orthoptera: Acrididae), is a major grasshopper pest of subsistence crops in the West African Sahel. In northern Mali, O. senegalensis spends the dry season in the egg stage in the soil and eclosion is triggered by the first rains which usually occur in May and June. Satellite imagery potentially enables rainfall, and hense O. senegalensis eclosion, to be monitored over much wider areas than those possible for ground-based observers. In 1990 and 1991, rain-gauge networks were set up at Mourdiah, northern Mali, and for each storm event, rainfall and Meteosat infra-red data were collected. The coldest convection clouds (< -70°C) produced rain 93.1% (n = 15) of the time, whereas warmer cloud (>- 10°C) produced rain only once (n = 61). The relationship between minimum cloud temperature and log transformed rainfall data was negative and highly significant (P < 0.0005). The maximum rain-gauge separation for reliable point measurements of rainfall was 8 km. Simulated rainfall experiments showed that O. senegalensis eclosion is influenced both by soil type and by the quantity of water added to the soil. A grasshopper survey after the first rain in 1994 showed that 8 mm of rain was sufficient to cause eclosion 9 days later. The implications of these results for improved O. senegalensis control are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call