Abstract

Remote sensing estimates of vegetation nitrogen (N) and lignin concentration are central to assess ecosystem processes such as growth and decomposition. Although remote sensing techniques have been proven useful to assess N and lignin contents in continuous green canopies, more studies are needed to address their capabilities, particularly in low and sparsely vegetated ecosystems. We investigated the possibility of estimating canopy N and lignin concentrations in chaparral vegetation using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) reflectance acquired over an area around Point Dume in the Santa Monica Mountains (Los Angeles, CA, USA). Two approaches were tested: multiple stepwise regression based on first difference reflectance (FDR) and reflectance ( R) indices. Multiple stepwise regressions (of three or fewer wavelengths) accounted for a large variance in canopy biochemical concentration ( r 2∼0.9, P<0.01). Log transformed R indices [log (1/ R)] formulated on the basis of previously known N and lignin absorption wavelengths also showed significant correlations ( P<0.01) with canopy biochemical concentration ( r 2 ranging from 0.39 to 0.48). In addition, the contribution of structural and biochemical signals and background effects on the performance of these indices was evaluated. These indices accounted for a increased variance when adding information on canopy structural attributes (e.g., relative contribution of each species and biomass amount) to foliar biochemical concentration. The relative contributions of foliar biochemical concentration and canopy structure (biomass amount) on the spectral signal were further evaluated by analyzing the residuals from linear regressions: foliar N concentration accounted for 42% of the variance for a normalized difference index based on the 1510-nm N absorption feature, while the foliar lignin concentration accounted for 44% of the variance for a normalized difference index based on the 1754 nm lignin absorption feature. These percentages increased to 58% when stands with senescing vegetation were disregarded. We propose the two indices, Normalized Difference Nitrogen Index (NDNI=[log (1/ R 1510)−log (1/ R 1680)]/[log (1/ R 1510)+log (1/ R 1680)]) and Normalized Difference Lignin Index (NDLI=[log (1/ R 1754)−log (1/ R 1680)]/[log (1/ R 1754)+log (1/ R 1680)]) as indices to assess N and lignin in native shrub vegetation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.