Abstract

Marine phytoplankton are the basis of the whole marine ecosystem, and different groups of phytoplankton play different roles in the biogeochemical cycle. Satellite remote sensing is widely used in the retrieval of marine phytoplankton over a wide range and long time series, but not yet for taxonomical composition. In this study, we used coincident in situ measurement data from high-performance liquid chromatography (HPLC) and remote sensing reflectance (Rrs) to investigate the empirical relationships between phytoplankton groups and satellite measurements. A nonparametric model, generalized additive model (GAM), is introduced to establish inversion models of various marine phytoplankton groups. Seven inversion models (two sizes classes among the microphytoplankton and nanophytoplankton and four groups among the diatoms, dinoflagellates, chrysophytes, and cryptophytes) are applied to the South China Sea (SCS) for 2020, and satellite images of phytoplankton sizes and groups are presented. Microphytoplankton prevails in the coastal and continental shelf, and nanophytoplankton prevails in oligotrophic oceans. Among them, the dominant contribution of microphytoplankton comes from diatoms, and nanophytoplankton comes from chrysophytes. Diatoms (nearshore) and chrysophytes (outside the continental shelf) are the dominant groups in the SCS throughout the year. Dinoflagellates only become dominant in some coastal areas, while cryptophytes rarely become dominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.