Abstract

ABSTRACT Albedo plays a key role in regulating the absorption of solar radiation within ice surfaces and hence strongly regulates the production of meltwater. A combination of Landsat and Sentinel 2 data provides the longest continuous medium resolution (10–30 m) earth surface observatory records. An albedo product (harmonized satellite albedo, hereafter HSA) has already been developed and validated for the Greenland Ice Sheet (GrIS), using harmonized Landsat 4–8 and Sentinel 2 datasets. In this paper, the HSA was validated for various Arctic and alpine glaciers and ice caps using in situ measurements. We determine the optimal spatial window size in point-to-pixel analysis, the best practices in evaluating remote sensing algorithms with groundtruth data, and cross sensor comparison of the Landsat 9 (L9) and Landsat 8 (L8) data. The impact of the spatial window size on measured ice surface homogeneity and albedo validation was analysed at both local and regional scales. Homogeneity statistics calculated from the grey-level co-occurrence matrix (GLCM) suggest that the ice surface becomes more homogeneous as the image resolution becomes coarser. The optimal spatial window size was found to be 90 m, based on maximizing the statistical and graphical measures while minimizing the root mean square error and bias. HSAs generally agree closely with in situ albedo measurements (e.g. Pearson’s R ranges from 0.68 to 0.92) across various Arctic and alpine glaciers and ice caps. Cross sensor differences between L9 and L8 are minor, and we suggest that no harmonization is necessary to add L9 to our HSA product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call