Abstract

Glacier change over the Qinghai-Tibet Plateau (QTP) provides an important clue to climate change in the remote high-altitude areas, and impacts various aspects of regional environment. Observations of mountain glaciers over the QTP are yet far from sufficient. Remote sensing techniques enable mapping and monitoring glaciers over an extensive region, from different dimensions and with regular revisit time. At present, mapping debris-covered glaciers and estimating glacier mass balances are one of the most challenging issues. This study illustrates the use of remote sensing techniques for glacier mapping and change detection, with multi-temporal and multi-source data. We show contrasting behavior of different type glaciers (temperate, semi-continental and continental) in three typical densely glacierized sub-regions of the plateau, mainly based on elevation data from ICESat and Landsat imagery. Glacier-climate interaction is analyzed further. Here we stress the challenges of applying remote sensing techniques for mapping and monitoring glaciers over the QTP, and prospects in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.