Abstract
We present a new methodology—the Keplerian Optical Dynamics Analysis (KODA)—for quantifying the dynamics of erupting magnetic structures in the solar corona. The technique involves adaptive spatiotemporal tracking of propagating intensity gradients and their characterization in terms of time-evolving Keplerian areas swept out by the position vectors of moving plasma blobs. Whereas gravity induces purely ballistic motions consistent with Kepler’s second law, noncentral forces such as the Lorentz force introduce nonzero torques resulting in more complex motions. KODA algorithms enable direct evaluation of the line-of-sight component of the net torque density from the image-plane projection of the areal acceleration. The method is applied to the prominence eruption of 2011 June 7, observed by the Solar Dynamics Observatory’s Atmospheric Imaging Assembly. Results obtained include quantitative estimates of the magnetic forces, field intensities, and blob masses and energies across a vast region impacted by the postreconnection redistribution of the prominence material. The magnetic pressure and energy are strongly dominant during the early, rising phase of the eruption, while the dynamic pressure and kinetic energy become significant contributors during the subsequent falling phases. Measured intensive properties of the prominence blobs are consistent with those of typical active-region prominences; measured extensive properties are compared with those of the whole pre-eruption prominence and the post-eruption coronal mass ejection of 2011 June 7, all derived by other investigators and techniques. We show that KODA provides valuable information on spatially and temporally dependent characteristics of coronal eruptions that is not readily available via alternative means, thereby shedding new light on the environment and evolution of these solar events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.