Abstract
AbstractAimsMapping gradual transitions in plant species composition via a combination of ordination and regression from remote sensing data is becoming an established approach. However, straightforward analysis of areas with high species turnover rates may result in a loss of information since a high level of generalization is required. In this study, we investigate whether analysis of more homogeneous subsets, in contrast to processing of the complete dataset, is a viable approach to mapping multiple floristic gradients.LocationThe coastal nature reserve “Zwin” (Belgium).MethodsThe measured dataset is partitioned into more homogeneous subsets based upon species composition using hierarchical classification. The dataset and subsets are then processed separately. First, ordination is performed to extract floristic gradients in plant species composition; second, these gradients are related to airborne hyperspectral remote sensing data through regression models and mapped by projecting these models on image data. Regression validation and Mantel tests are used to compare the results within the study and to other studies.ResultsHierarchical classification resulted in two homogeneous vegetation subsets. Ordination yielded four gradients in the area and all regression models compared favorably to similar studies in other areas with R² values ranging from 0.47 to 0.74. The Mantel test showed that by dividing the dataset into subsets, higher resemblance to the original vegetation data can be achieved.ConclusionWe showed that mapping gradual transitions in plant species composition across multiple subsets sampled from one measured vegetation dataset is a promising approach for retrospective analysis of areas with high species turnover rates. In addition to potential improvements in performance, this complementary analysis enables mapping of additional gradients, suggesting that all conventionally predicted maps remain available, valuable, and necessary for thorough understanding of plant species composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.