Abstract

Groundwater is one of the most important natural resources. Regional groundwater depth is an important parameter for understanding groundwater resources and maintaining sustainable development of water resources and environment. The middle reaches of the Tarim River in Xinjiang are the most primitive and well-preserved place in the world, which provides valuable resources in studying the response mechanism of surface vegetation to the groundwater level. The ecological environment of Tarim River Basin has been deteriorating, and Populuseuphratica forest has died, which is directly related to the decrease of water inflow and groundwater level around the Tarim River. To obtain the spatial distribution of the groundwater level, this study uses the MODIS satellite remote sensing image data and the remote sensing-mathematical-model of a fusion science research methods, based on the field investigation of the groundwater level, soil moisture, and other supporting information on Aeolian desertification area in the middle reaches of Tarim River in Xinjiang. Through the experimental equation of the soil moisture and groundwater level, a simple and effective remote sensing method was proposed. This method is used to evaluate the spatial distribution of groundwater level based on the MODIS image data when there is capillary supply in the soil. This model was field-proven on the desertification area in the middle reaches of Tarim River. The results indicate that the correlation coefficient between the inversion of groundwater depth and the measured groundwater level is 0.89, which are realistic with small errors. So it is feasible to monitor and assess the spatial distribution of groundwater table depth in desertification areas with a large groundwater depth of 6 m or less. This study is helpful to provide critical area for the ecological environment monitoring and restoration, and ultimately serve the sustainable development of water and environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.