Abstract

With the rapid advancement of technology, satellite and drone technologies have had significant impacts on various fields, creating both opportunities and challenges. In areas like the military, urban planning, and environmental monitoring, the application of remote sensing technology is paramount. However, due to the unique characteristics of remote sensing images, such as high resolution, large-scale scenes, and small, densely packed targets, remote sensing object detection faces numerous technical challenges. Traditional detection methods are inadequate for effectively detecting small targets, rendering the accurate and efficient detection of objects in complex remote sensing images a pressing issue. Current detection techniques fall short in accurately detecting small targets compared to medium and large ones, primarily due to limited feature information, insufficient contextual data, and poor localization capabilities for small targets. In response, we propose an innovative detection method. Unlike previous approaches that often focused solely on either local or contextual information, we introduce a novel Global and Local Attention Mechanism (GAL), providing an in-depth modeling method for input images. Our method integrates fine-grained local feature analysis with global contextual information processing. The local attention concentrates on details and spatial relationships within local windows, enabling the model to recognize intricate details in complex images. Meanwhile, the global attention addresses the entire image’s global information, capturing overarching patterns and structures, thus enhancing the model’s high-level semantic understanding. Ultimately, a specific mechanism fuses local details with global context, allowing the model to consider both aspects for a more precise and comprehensive interpretation of images. Furthermore, we have developed a multi-head prediction module that leverages semantic information at various scales to capture the multi-scale characteristics of remote sensing targets. Adding decoupled prediction heads aims to improve the accuracy and robustness of target detection. Additionally, we have innovatively designed the Ziou loss function, an advanced loss calculation, to enhance the model’s precision in small target localization, thereby boosting its overall performance in small target detection. Experimental results on the Visdrone2019 and DOTA datasets demonstrate that our method significantly surpasses traditional methods in detecting small targets in remote sensing imagery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call