Abstract
In harbour areas, the irrational layout and high density of mariculture cages can lead to a dramatic deterioration of the culture’s ecology. Therefore, it is important to analyze and regulate the distribution of cages using intelligent analysis based on deep learning. We propose a remote sensing image segmentation method based on the Swin Transformer and ensemble learning strategy. Firstly, we collect multiple remote sensing images of cages and annotate them, while using data expansion techniques to construct a remote sensing image dataset of mariculture cages. Secondly, the Swin Transformer is used as the backbone network to extract the remote sensing image features of cages. A strategy of alternating the local attention module and the global attention module is used for model training, which has the benefit of reducing the attention computation while exchanging global information. Then, the ensemble learning strategy is used to improve the accuracy of remote sensing cage segmentation. We carry out quantitative and qualitative analyses of remote sensing image segmentation of cages at the ports of Li’an, Xincun and Potou in Hainan Province, China. The results show that our proposed segmentation scheme has significant performance improvement compared to other models. In particular, the mIoU reaches 82.34% and pixel accuracy reaches 99.71%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.