Abstract

With the development of deep learning, supervised learning methods perform well in remote sensing image (RSI) scene classification. However, supervised learning requires a huge number of annotated data for training. When labeled samples are not sufficient, the most common solution is to fine-tune the pretraining models using a large natural image data set (e.g., ImageNet). However, this learning paradigm is not a panacea, especially when the target RSIs (e.g., multispectral and hyperspectral data) have different imaging mechanisms from RGB natural images. To solve this problem, we introduce a new self-supervised learning (SSL) mechanism to obtain the high-performance pretraining model for RSI scene classification from large unlabeled data. Experiments on three commonly used RSI scene classification data sets demonstrated that this new learning paradigm outperforms the traditional dominant ImageNet pretrained model. Moreover, we analyze the impacts of several factors in SSL on RSI scene classification, including the choice of self-supervised signals, the domain difference between the source and target data sets, and the amount of pretraining data. The insights distilled from this work can help to foster the development of SSL in the remote sensing community. Since SSL could learn from unlabeled massive RSIs, which are extremely easy to obtain, it will be a promising way to alleviate dependence on labeled samples and thus efficiently solve many problems, such as global mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.