Abstract

As a list of remotely sensed data sources is available, the effective processing of remote sensing images is of great significance in practical applications in various fields. This paper proposes a new lightweight network to solve the problem of remote sensing image processing by using the method of deep learning. Specifically, the proposed model employs ShuffleNet V2 as the backbone network, appropriately increases part of the convolution kernels to improve the classification accuracy of the network, and uses the maximum overlapping pooling layer to enhance the detailed features of the input images. Finally, Squeeze and Excitation (SE) blocks are introduced as the attention mechanism to improve the architecture of the network. Experimental results based on several multisource data show that our proposed network model has a good classification effect on the test samples and can achieve more excellent classification performance than some existing methods, with an accuracy of 91%, and can be used for the classification of remote sensing images. Our model not only has high accuracy but also has faster training speed compared with large networks and can greatly reduce computation costs. The demo code of our proposed method will be available at https://github.com/li-zi-qi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.