Abstract

Remote sensing classification, as an important means of urban planning and construction, has been widely concerned. Urban land use classification is extremely challenging tasks because of some land covers are spectrally too similar to be separated using only the spectral information of remote sensing image. Object-oriented remote sensing image classification method overcomes the drawbacks of traditional pixel-based classification method. It combines the spectral, special structure and texture features of the images, can effectively avoid the phenomenon of "different objects share the same spectrum" or "the same objects differ in spectrum. Support Vector Machine (SVM) is an excellent tool for remote sensing classification. Combination of both can develop their own advantages to do high-resolution remote sensing image classification. Using a public image in Harbin city as an example, classification based on object-oriented method and SVM has achieved better results than traditional pixel-based classification method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.