Abstract

Since remote sensing images are difficult to obtain and need to go through a complicated administrative procedure for use in China, it cannot meet the requirement of huge training samples for Waterside Change Detection based on deep learning. Recently, data augmentation has become an effective method to address the issue of an absence of training samples. Therefore, an improved Generative Adversarial Network (GAN), i.e., BTD-sGAN (Text-based Deeply-supervised GAN), is proposed to generate training samples for remote sensing images of Anhui Province, China. The principal structure of our model is based on Deeply-supervised GAN(D-sGAN), and D-sGAN is improved from the point of the diversity of the generated samples. First, the network takes Perlin Noise, image segmentation graph, and encoded text vector as input, in which the size of image segmentation graph is adjusted to 128 × 128 to facilitate fusion with the text vector. Then, to improve the diversity of the generated images, the text vector is used to modify the semantic loss of the downsampled text. Finally, to balance the time and quality of image generation, only a two-layer Unet++ structure is used to generate the image. Herein, “Inception Score”, “Human Rank”, and “Inference Time” are used to evaluate the performance of BTD-sGAN, StackGAN++, and GAN-INT-CLS. At the same time, to verify the diversity of the remote sensing images generated by BTD-sGAN, this paper compares the results when the generated images are sent to the remote sensing interpretation network and when the generated images are not added; the results show that the generated image can improve the precision of soil-moving detection by 5%, which proves the effectiveness of the proposed model.

Highlights

  • With the rapid development of remote sensing technology [1], it is relatively easy to acquire a remote sensing image, but there are still problems: the acquired image cannot be used immediately and often requires a cumbersome processing process

  • Rank”, and “Inference Time”, which indicates that BTD-sGAN can generate clearer and more diverse images according to text description, and shorten the time of image generation to meet the needs of the actual generation task

  • Aiming at the lack of samples in the deep learning-based remote sensing image detection project, a new text-based generative adversarial network called BTD-sGAN is proposed for the data augmentation of remote sensing image

Read more

Summary

Introduction

With the rapid development of remote sensing technology [1], it is relatively easy to acquire a remote sensing image, but there are still problems: the acquired image cannot be used immediately and often requires a cumbersome processing process. The obtained samples lack the corresponding label, which requires a high sample label for the research of deep learning. Researchers need to spend a great deal of energy to annotate the existing image, and this has greatly hindered the widespread use of remote sensing images. How to save time and labor costs with the labeling of high-quality samples has become an urgent problem to be solved. As an effective means to solve this problem, data augmentation has become a hot research topic. There is a lack of remote sensing

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.