Abstract

Hydrological processes in mid-latitude mountainous regions are greatly affected by changes in vegetation cover that induced by the climate change. However, studies on hydrological processes in mountainous regions are limited, because of difficulties in building and maintaining basin-wide representative hydrological stations. In this study, a new method, remote sensing technology for monitoring river discharge by combining satellite remote sensing, unmanned aerial vehicles and hydrological surveying, was used for evaluating the runoff processes in the Changbai Mountains, one of the mid-latitude mountainous regions in the eastern part of Northeast China. Based on this method, the impact of vegetation cover change on hydrological processes was revealed by combining the data of hydrological processes, meteorology, and vegetation cover. The results showed a decreasing trend in the monitored river discharge from 2000 to 2021, with an average rate of −5.13 × 105 m3 yr−1. At the monitoring section mainly influenced by precipitation, the precipitation-induced proportion of changes in river discharge to annual average river discharge and its change significance was only 6.5 % and 0.23, respectively, showing the precipitation change was not the cause for the decrease in river discharge. A negative impact of evapotranspiration on river discharge was found, and the decrease in river discharge was proven to be caused by the increasing evapotranspiration, which was induced by the drastically increased vegetation cover under a warming climate. Our findings suggested that increases in vegetation cover due to climate change could reshape hydrological processes in mid-latitude mountainous regions, leading to an increase in evapotranspiration and a subsequent decrease in river discharge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.