Abstract

Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS) system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite) is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

Highlights

  • In the present study, we propose a new method of bathymetry restitution developed for the LakePoopó in Bolivia

  • Intersections on a sloping flooded area seen from nadir or in the river path can give values 1–3 m above the real water elevation

  • From Landsat images collected in 1985 and 1986 we know that the water stage was higher than during the current decade but the method described here cannot be applied due to changes in dune and shoreline formation, which are inconsistent with the measure of ICESat during the last decade

Read more

Summary

Introduction

We propose a new method of bathymetry restitution developed for the Lake. With this method we have recovered Lake Poopó water levels and storage time series which have remained unknown until now. Geographical applicability of our method is limited to lakes situated in arid or semi-arid regions. 3,686 m above sea level) is comprised of two interconnected lakes, Lake Uru-Uru and Lake Poopó (Figure 1a). Lake Poopó is remarkably shallow and sensitive to climate variations. Its shallow zone is seasonally dependent on hydrologic recharge during the wet season, which varies in extent from almost 0 to 3,000 km2 [1]. Lake Poopó is part of the Titicaca-Poopó-Desaguadero-Salar de Coipasa water system (TPDS) and plays an important role in the regional water budget.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.