Abstract

ABSTRACT Data assimilation (DA) offers immense potential for uncertainty identification, improving the initial estimates for hydrological and atmospheric modelling. This paper reviews the studies in hydrological DA using Kalman filters. Recent applications of Kalman filters in hydrological and atmospheric DA are summarized. Existing challenges for DA studies are briefly described. In addition, three case study examples are presented highlighting the effects of: (a) soil moisture DA in the Noah land surface model; (b) variational assimilation for improving precipitation forecasts in the WRF (Weather Research Forecast) model; and (c) simulating AMSR-2 (Advanced Microwave Scanning Radiometer-2) radiances towards DA. Although there are many unresolved issues in DA that warrant further research, it has immense potential for predicting variables at a better lead time for hydrometeorology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.