Abstract

We performed a meta-analysis on over 100 studies applying remote sensing (RS) and geographic information systems (GIS) to understand treeline dynamics. A literature search was performed in multiple online databases, including Web of Knowledge (Thomson Reuters), Scopus (Elsevier), BASE (Bielefeld Academic Search Engine), CAB Direct, and Google Scholar using treeline-related queries. We found that RS and GIS use has steadily increased in treeline studies since 2000. Spatial-resolution RS and satellite imaging techniques varied from low-resolution MODIS, moderate-resolution Landsat, to high-resolution WorldView and aerial orthophotos. Most papers published in the 1990s used low to moderate resolution sensors such as Landsat Multispectral Scanner and Thematic Mapper, or SPOT PAN (Panchromatic) and MX (Multispectral) RS images. Subsequently, we observed a rise in high-resolution satellite sensors such as ALOS, GeoEye, IKONOS, and WorldView for mapping current and potential treelines. Furthermore, we noticed a shift in emphasis of treeline studies over time: earlier reports focused on mapping treeline positions, whereas RS and GIS are now used to determine the factors that control treeline variation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call