Abstract

We show here that a remote sensing (RS) approach is a cost-efficient and accurate method to study water resource dynamics in semi-arid areas. We use a MODIS surface reflectance dataset and a Modified Normalized Difference Water Index (MNDWI) to map the variability of Lake Manyara’s water surface area using a histogram segmentation technique. The results indicate that Lake Manyara’s water surface coverage has been decreasing from 520.25 km2 to 30.5 km2 in 2000 and 2011 respectively. We observe that the lake water surface and the lake water balance displayed a similar pattern from 2006 to 2009, probably initiated by heavy rainfall and low temperature in 2006. Lake water surface area appears to have an inverse relationship with MODIS evapotranspiration (ET) and MODIS land surface temperature (LST). We imply that recent fluctuations of Lake Manyara’s surface water area are a direct consequence of global and regional climate fluctuations. We therefore conclude that, by means of RS it is possible to provide timely and up-to-date water resource information to managers and hence enable optimized and operational decisions for sustainable management and conservation. We suggest that the method employed in this research should be applied to monitor water resource dynamics provided that remotely sensed datasets are available.

Highlights

  • Water resources are crucial to human health and the natural environment [1]

  • In this study we show the potential of remote sensing in water resource status dynamics assessment and monitoring

  • Our study shows that Lake Manyara has experienced a significant surface area variation from 2000 to 2011, and almost dried completely in 2005 and 2011

Read more

Summary

Introduction

Water resources are crucial to human health and the natural environment [1]. Water resources include surface water, groundwater, inland water, rivers, lakes, transitional waters, coastal waters and aquifers [2]. In this study we look at lake water resources. Lakes are key tools for the management of water resources [3]. They are essential component of the hydrological cycle [4]. Monitoring lake dynamics is necessary to allow sustainable management of water resources. Changes in the areal extent of lake surface water may occur due to various factors including progressive infilling of the lake basin by sediments, climate change, tectonic activity causing uplift and subsidence, or the development of drainage faults [6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.