Abstract

BackgroundFrequent vital sign monitoring during and after transfusion of blood products and certain chemotherapies or immunotherapies is critical for detecting infusion reactions and treatment management in patients. Currently, patients return home with instructions to contact the clinic if they feel unwell. Continuous monitoring of vital signs for hematological patients treated with immunotherapy or chemotherapy or receiving blood transfusions using wearable electronic biosensors during and post treatment may improve the safety of these treatments and make remote data collection in an outpatient care setting possible.ObjectiveThis study aimed to evaluate patient experiences with the VitalPatch wearable sensor (VitalConnect) and to evaluate the usability of data generated by the physIQ accelerateIQ monitoring system for the investigator and nurse.MethodsA total of 12 patients with hematological disorders receiving red blood cell transfusions, an intravenous (IV) proteasome inhibitor, or an IV immunotherapy agent were included in the study and wore the VitalPatch for 12 days. Patients completed questionnaires focusing on wearability and nurses completed questionnaires focusing on the usability of the VitalPatch.ResultsA total of 12 patients were enrolled over 9 months, with 4 receiving red blood cell transfusions, 4 receiving IV proteasome inhibitors, and 4 receiving IV immunotherapy. These patients were treated for diseases such as multiple myeloma, myelodysplastic syndrome, and non-Hodgkin lymphoma. Of these patients, 83% (10/12) were aged 60 years and older. A total of 4 patients (4/12, 33%) withdrew from the study (3 because of skin irritation and 1 because of patch connection issues). Patients wore biosensor patches at baseline and for 1-week post administration. Patient-reported outcomes (PROs) were collected at baseline, day 1, day 5, and day 8. No difference in the PRO was observed when nurses or patients applied the patch. PRO data indicated minimal impact on the patient’s life. Ease of use, influence on sleep, impact on follow-up of health, or discomfort with continuous monitoring did not change between baseline and day 8. Changes in PRO were observed on day 5, where a 20% (2/10) increase in skin irritation was reported. Withdrawals because of skin irritation were reported in all cases when wearing the second patch. Nurses reported the placement of the VitalPatch to be easy and felt measurements to be reliable.ConclusionsGenerally, the VitalPatch was well tolerated and shown to be an attractive device because of its wearability and low impact on daily activities in patients, therefore making it suitable for implementation in future studies.

Highlights

  • Background continuous patient monitoring is often thought to be reserved for intensive care units, the need for frequent assessment of vital signs is necessary in other clinical circumstances as well

  • A total of 12 patients with hematological disorders receiving red blood cell transfusions, an intravenous (IV) proteasome inhibitor, or an IV immunotherapy agent were included in the study and wore the VitalPatch for 12 days

  • A total of 12 patients were enrolled over 9 months, with 4 receiving red blood cell transfusions, 4 receiving IV proteasome inhibitors, and 4 receiving IV immunotherapy

Read more

Summary

Introduction

Continuous patient monitoring is often thought to be reserved for intensive care units, the need for frequent assessment of vital signs is necessary in other clinical circumstances as well. Examples of these circumstances include during and after transfusion of blood products, and during and after transfusion of certain chemotherapies and immunotherapies [1,2]. Frequent vital sign monitoring during and after transfusion of blood products and certain chemotherapies or immunotherapies is critical for detecting infusion reactions and treatment management in patients. Continuous monitoring of vital signs for hematological patients treated with immunotherapy or chemotherapy or receiving blood transfusions using wearable electronic biosensors during and post treatment may improve the safety of these treatments and make remote data collection in an outpatient care setting possible

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call