Abstract

The processes governing energy storage and release in the Sun are both related to the solar magnetic field. We demonstrate the existence of a magnetic connection between the energy released by a flare and increased oscillatory power in the lower solar atmosphere. The oscillatory power in active regions tends to increase in response to explosive events at other locations, but not in the active region itself. We carry out timing studies and show that this effect is probably caused by a large-scale magnetic connection between the regions, instead of a globally-propagating wave. We show that oscillations tend to exist in longer-lived wave trains with short periods (P < 200 s) at the time of a flare. These wave trains may be mechanisms by which flare energy can be redistributed throughout the solar atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.