Abstract

The technical specifications and the evaluation of the remote operation of the open-path, tunable diode laser absorption spectroscopic (TDLAS) instrument are presented. The instrument is equipped with two low optical power diode lasers in the near-infrared spectral range for the atmospheric detection of carbon dioxide, methane, and water vapors (CO2, CH4, and H2O). Additionally, the instrument eliminates the requirement of retroreflectors since it detects the back reflection of the laser beam from any topographic target. The instrument was operated remotely by measuring background concentrations of CO2 and CH4 in the atmosphere from 24 November 2022 to 4 January 2023. The accuracy of CO2 and CH4 measurement retrievals on a 200 m laser path was estimated at 20 ppm (4.8%) and 60 ppb (3.1%), respectively. The CH4 accuracy is comparable, but the CO2 accuracy is noticeably lower than the accuracy achieved in local operation. The accuracy issues raised are studied and discussed in terms of the laser driver’s cooling performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call