Abstract

We modified our 910-m long path THz system to increase the signal-to-noise ratio (S/N) with a nanostructure plasmonic THz transmitter (Tx) chip and a seven-mirror array reflector with 1 m diameter. When the THz pulse propagates the 910-m distance in the atmosphere, the S/N is up to 1170:1, which made the THz pulse measurable at a high water vapor density (WVD) of up to 25.2 g/m3. The time shift of the THz pulse according to the WVD measured for each meteorological season was matched well with the theoretical result. Due to the modified long-distance THz system, we were able to measure for the first time the resonances of N2O gas, which is located 455 m away from the Tx and receiver (Rx) chips and contained in a 1.5-m diameter rubber balloon under atmospheric pressure. Seven resonances can be detected except for one overlay of resonant frequency by water vapor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.