Abstract

Transcutaneous spinal cord stimulation (tSCS) is a useful technique for the clinical assessment of neurological disorders. However, the characteristics of the spinal cord circuits activated by tSCS are not yet fully understood. In this study, we examined whether remote muscle contraction enhances the spinal reflexes evoked by tSCS in multiple lower-limb muscles. Eight healthy men participated in the current experiment, which required them to grip a dynamometer as fast as possible after the presentation of an auditory cue. Spinal reflexes were evoked in multiple lower-limb muscles with different time intervals (50-400ms) after the auditory signals. The amplitudes of the spinal reflexes in all the recorded leg muscles significantly increased at 50-250ms after remote muscle activation onset. This suggests that remote muscle contraction simultaneously facilitates the spinal reflexes in multiple lower-limb muscles. In addition, eight healthy men performed five different tasks (i.e., rest, hand grip, pinch grip, elbow flexion, and shoulder flexion). Compared to control values recorded just before each task, the spinal reflexes evoked at 250ms after the auditory signals were significantly enhanced by the above tasks except for the rest task. This indicates that such facilitatory effects are also induced by remote muscle contractions in different upper-limb areas. The present results demonstrate the existence of a neural interaction between remote upper-limb muscles and spinal reflex circuits activated by tSCS in multiple lower-limb muscles. The combination of tSCS and remote muscle contraction may be useful for the neurological examination of spinal cord circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call