Abstract

The passive remote monitoring of multi-gas mixtures was experimentally investigated using Fourier transform infrared (FT-IR) radiometry. The spectral radiance data were collected using a dual-port radiometrically balanced interferometer for a variety of multi-gas plumes at a standoff distance of 60 m. Two basic sets of mixtures were studied. The first set corresponded to mixtures consisting of three gases with no overlapping spectral bands (C(2)H(2), C(2)H(4), and R14). The second set corresponded to mixtures of three gases having significant spectral overlap (C(2)H(4), R114, and R134a). For each mixture the flow rates of individual constituents were adjusted to yield specific constituent optical-density (CL) ratios. These ratios were compared to the optical-density ratios retrieved from the measured infrared radiance spectra. Results of this study indicated that for both sets of multi-gas mixtures the optical-density ratios retrieved by the passive remote monitoring technique were in good agreement with those derived from the release flow rates, provided that a simple correction scheme was introduced to compensate for the limited accuracy of the fast radiance model implemented in the monitoring algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call