Abstract

A liquid-phase cycloaddition reaction near ambient temperature involving dimethyl acetylenedicarboxylate (DMAD) and cyclopentadiene (CP) as reactants was measured using a conventional Fourier transform infrared (FT-IR) spectrometer with an emission accessory. Two semi-batch experiments were performed and a total of 55 spectra were collected using a DTGS detector. Band-target entropy minimization (BTEM), a pure component spectral reconstruction technique, was applied to analyze the data set to retrieve the pure component emission spectrum from the reaction system. The estimated emission spectra of the solvent chloroform, DMAD, CP, and product, namely dimethyl bicyclo[2.2.1]-2,5-heptadiene-2,3-dicarboxylate, were all reconstructed with rather good quality. The estimated emission spectra are similar to independent FT-IR spectra of the same cycloaddition reaction. Using a least squares fit, the relative concentration profiles of the species are obtained. Because this appears to be the first time that a liquid-phase reaction has been monitored by infrared emission spectroscopy, further improvements and opportunities for general multi-phase liquid reaction monitoring are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.