Abstract

Until now, information concerning spatial interaction of postsynaptic excitation and inhibition in neuronal dendrites remains rather limited. In model experiments, we studied spatial effects of tonic co-activation of GABA-ergic synapses situated on the soma and axon hillock of a motoneuron and dendritic glutamatergic synapses with receptors sensitive or insensitive to N-methyl-D-aspartate. We analyzed distribution maps of the transmembrane potentials and excitatory currents transferred toward the soma over the reconstructed dendritic arborization of a rat abducens motoneuron (three-dimensional reconstruction). In the motoneuron, isolated tonic excitation of glutamatergic synapses induced two stable states of low (downstate) or high (upstate) spatially heterogeneous dendritic depolarization, which decayed with unequal rates along different dendritic paths. In this case, the local steady-state current-voltage relation of the dendritic membrane became N-shaped due to a limb of the negative slope within a certain voltage range. The upstate corresponding to plateau potentials associated with stereotyped motor activity patterns was analyzed in detail. In this state, most proximal dendritic sites were the main sources of the excitatory current reaching the soma, while the contribution from distal sites was negligible. Co-activation of GABA-synapses located at the soma and axon hillock reduced this depolarization and shifted the main excitatory current source from a perisomatic location to the middle, structurally more complex, region of the dendritic arborization. The more remote dendritic region having a greater membrane area and receiving a greater number of synaptic contacts became directly involved in the supply of the trigger zone by the excitatory current. We suggest that a special, not described earlier, operational mechanism of postsynaptic inhibition is manifested in the above spatial effects of activation of strategically located inhibitory synapses, and that the list of known crucial inhibitory mechanisms (namely hyperpolarization and shunting of the postsynaptic membrane) must be expanded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call