Abstract
A method of determining thermal diffusivity in thin plates is presented. The method, using infrared images of evolving thermal patterns previously injected with a laser, is noncontacting, one-sided, and remote. It does not require independent estimates of either the emissivity of the sample or the sample thickness. With a line-segment pattern for thermal input, it yields the in-plane components of the diffusivity tensor in anisotropic materials and also the rate of heat loss to the environment of the plate. Two methods of data analysis are presented, one corresponding to a heating line of general cross section and the other considering a Gaussian cross section, thereby saving considerable computer time. Both methods produce a statistical evaluation of measurement quality as well as estimates of diffusivity and loss rate. Results are shown for plates of metals and graphite-epoxy composite materials. Principal components and orientation for the diffusivity tensor are obtained in the anisotropic graphite-epoxy sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.