Abstract

The applicability of the high energy discretely tuned DF laser for remote measurement of HCl, CH(4), and N(2)O has been investigated. A single-ended or monostatic lidar system using radiation backscattered from topographical targets was tested. Selective absorption of the backscattered signal was used to infer concentration of gaseous species. Good agreement was obtained between the lidar measurements and the concentrations determined by in situ measurements in the remotely positioned sample chamber. The lowest measurable material concentration for each gas was inferred from random fluctuations in the measured concentration. Sensitivity of the existing system to HCl, CH(4), and N(2)O was found to be 0.05 ppm-km, 6.0 ppm-km, and 0.24 ppm-km, respectively. An N(2)O plume was also measured in the open atmosphere between the lidar system and a foliage target to demonstrate system capabilities under typical field conditions. Performance predictions indicate that total burden and range-resolved species concentration measurements are feasible to a range of 10 km or more with commercially available components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.