Abstract

Combined heat and power (CHP) systems are widely used to prevent global warming and reduce energy costs. Both high efficiency of the elements and good coordination of the systems are considered as the points to solve. A microturbine CHP with a latent heat storage system was demonstrated at Sapporo City University. The heat exchanger of the CHP and an economizer were located in parallel downstream a bypass-dumper of the exhaust gas. The latent heat storage tank was located downstream the economizer. The bypass-dumper released exhaust gas when the boiler water in the heat exchanger exceeded 90°C. It is very important to use the heat supply of hot water as much as possible. At Sapporo City University, the winter term heat demand from 6pm to 7pm was somewhat smaller than that from 8am to 6pm. We tested a partial load from 6pm to 7pm to observe how it would respond to the heat demand. The heat supply from the microturbine CHP from 6pm to 7pm was shown to be controllable with heat storage. The heat supply from the microturbine CHP at the lowest power was larger than the heat demand so without the heat storage it was uncontrollable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.