Abstract
Laser‐induced breakdown spectroscopy (LIBS) was recently selected to provide active remote sensing compositional information on the Mars Science Laboratory (MSL) rover. The ability of LIBS to remotely determine differences between basaltic rock types on Mars is investigated by analyzing two Martian basaltic shergottite meteorites whose compositions differ slightly and which also differ slightly in texture. Using 14 analysis spots of ~400 µm diameter on Dar al Gani (DaG) 476 and 9 analysis spots on Zagami, the LIBS technique at a 5.4 m standoff distance clearly distinguished the olivine‐phyric (DaG 476) from the basaltic (Zagami) shergottite on the basis of MgO and CaO. Mean elemental abundances agreed with literature values for these meteorites to within ~12% for most of the major elements. The ability of LIBS to remotely distinguish between basaltic and andesitic compositions in a Martian environment was also investigated by analyzing a known andesite standard and comparing its spectra to the Martian basaltic shergottite spectra, yielding agreement with the literature andesite composition within 9%. The data presented here demonstrate the ability of LIBS to provide reasonable estimates of whole rock composition as well as determine relatively subtle differences in rock types from a distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.