Abstract
AbstractWhether the South Asian summer monsoon (SASM) is controlled by local or remote insolation at the orbital band remains uncertain. Here, we perform a transient simulation forced by Earth's orbital parameters between 400 and 350 ka BP, a period characterized by significant contrast between local and remote insolation, to identify the SASM's response to insolation forcing. Simulation results suggest that the primary driver of orbital‐scale SASM variability is the Northern Hemisphere high‐latitude June insolation, as opposed to local insolation. High June insolation in the Southern Hemisphere might reduce the SASM intensity. Remote insolation influences the SASM by altering the latitudinal thermal gradient and, consequently, the meridional position of the South Asian high (SAH). The SAH is associated with intense convection and hence drives the meridional shift of the intertropical convergence zone and the SASM rain belt. Thus, orbital‐scale SASM variability is strongly related to remote insolation forcing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.