Abstract

A remote laboratory utilizing field-programmable gate array (FPGA) technologies enhances students’ learning experience anywhere and anytime in embedded system design. Existing remote laboratories prioritize hardware access and visual feedback for observing board behavior after programming, neglecting comprehensive debugging tools to resolve errors that require internal signal acquisition. This paper proposes a novel remote embedded-system design approach targeting FPGA technologies that are fully interactive via a web-based platform. Our solution provides FPGA board access and debugging capabilities beyond the visual feedback provided by existing remote laboratories. We implemented a lab module that allows users to seamlessly incorporate into their FPGA design. The module minimizes hardware resource utilization while enabling the acquisition of a large number of data samples from the signal during the experiments by adaptively compressing the signal prior to data transmission. The results demonstrate an average compression ratio of 2.90 across three benchmark signals, indicating efficient signal acquisition and effective debugging and analysis. This method allows users to acquire more data samples than conventional methods. The proposed lab allows students to remotely test and debug their designs, bridging the gap between theory and practice in embedded system design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.