Abstract

Remote monitoring of trophic state for inland waters is a hotspot of water quality studies worldwide. However, the complex optical properties of inland waters limit the potential of algorithms. This research aims to develop an algorithm to estimate the trophic state in inland waters. First, the turbid water index was applied for the determination of optical water types on each pixel, and water bodies are divided into two categories: algae-dominated water (Type I) and turbid water (Type II). The algal biomass index (ABI) was then established based on water classification to derive the trophic state index (TSI) proposed by Carlson (1977). The results showed a considerable precision in Type I water (R2 = 0.62, N = 282) and Type II water (R2 = 0.57, N = 132). The ABI-derived TSI outperformed several band-ratio algorithms and a machine learning method (RMSE = 4.08, MRE = 5.46%, MAE = 3.14, NSE = 0.64). Such a model was employed to generate the trophic state index of 146 lakes (> 10 km2) in eastern China from 2013 to 2020 using Landsat-8 surface reflectance data. The number of hypertrophic and oligotrophic lakes decreased from 45.89% to 21.92% and 4.11% to 1.37%, respectively, while the number of mesotrophic and eutrophic lakes increased from 12.33% to 23.97% and 37.67% to 52.74%. The annual mean TSI for the lakes in the lower reaches of the Yangtze River basin was higher than that in the middle reaches of the Yangtze River and Huai River basin. The retrieval algorithm illustrated the applicability to other sensors with an overall accuracy of 83.27% for moderate-resolution imaging spectroradiometer (MODIS) and 82.92% for Sentinel-3 OLCI sensor, demonstrating the potential for high-frequency observation and large-scale simulation capability. Our study can provide an effective trophic state assessment and support inland water management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.